Wastewater Re-use for Irrigation
Foreword

The formulation of this national standard was initiated by the Agricultural Machinery Testing and Evaluation Center (AMTEC) under the project entitled “Enhancement of Nutrient and Water Use Efficiency Through Standardization of Engineering Support Systems for Precision Farming” funded by the Philippine Council for Agriculture, Aquaculture and Forestry and Natural Resources Research and Development - Department of Science and Technology (PCAARRD - DOST).

As provided by the Republic Act 10601 also known as the Agricultural and Fisheries Mechanization Law (AFMech Law of 2013), the Bureau of Agriculture and Fisheries Standards (BAFS) is mandated to develop standard specifications and test procedures for agricultural and fisheries machinery and equipment. Consistent with its standards development process, BAFS has endorsed this standard for the approval of the DA Secretary through the Bureau of Agricultural and Fisheries Engineering (BAFE) and to the Bureau of Philippine Standards (BPS) for appropriate numbering and inclusion to the Philippine National Standard (PNS) repository.

This standard has been technically prepared in accordance with BPS Directives Part 3:2003 – Rules for the Structure and Drafting of International Standards.

The word “shall” is used to indicate mandatory requirements to conform to the standard.

The word “should” is used to indicate that among several possibilities one is recommended as particularly suitable without mentioning or excluding others.
1 Scope

This standard provides quality limits and prescribed quantity of wastewater to be reused for irrigation.

2 References

The following normative documents contain provisions through which reference in this text constitute provisions in this National Standard:

Department of Agriculture Administrative Order No. 26 Series of 2007:
Guidelines on the Procedures and Technical Requirements for the Issuance of a Certification Allowing the Safe Re-Use of Wastewater for Purposes of Irrigation and Other Agricultural Uses

- PNS/BAFS/PAES 224:2017 Design of a Pressurized Irrigation System – Part B: Drip Irrigation

3 Definitions

For the purpose of this standard, the following definitions shall apply:

3.1 **access areas**
areas open for public entry such as golf courses, public and private parks, playgrounds, schoolyards and playing fields, residential landscapes and industrial park landscapes

3.2 **algal bloom**
overgrowths of algae in water producing dangerous toxins in fresh or marine water

3.3 **contamination**
introduction of substances not found in the natural composition of water that make the water less desirable or unfit for intended use
3.4 effluent
discharges from known sources which is passed into a body of water or land, or wastewater flowing out of a manufacturing plant, industrial plant including domestic, commercial and recreational facilities

3.5 effluent standard
any legal restriction or limitation on quantities, rates, and/or concentrations or any combination thereof, of physical, chemical or biological parameters of effluent which a person or point source is allowed to delivery into a body of water or land

3.6 loading limit
allowable pollutant-loading limit per unit of time, which the wastewater generator is permitted to discharge into any receiving body of water or land.

3.7 pollutant
any substance, whether solid, liquid, gaseous or radioactive, which directly or indirectly alters the quality of any segment of the receiving water body or land resource so as to affect or tend to affect adversely any beneficial use thereof, or is hazardous or potentially hazardous to health, or imparts objectionable odor, temperature change or physical, chemical or biological change to any segment of the water body or land, or is in excess of the allowable limits or concentrations or quality standards specified in contravention of the condition, limitation or restriction prescribed in these guidelines

3.8 restricted areas
areas with limited entry such as freeway landscape, highway medians and other similar areas

3.9 re-use
taking wastewater from one industry or process, treating it and then using it in another process or industry such as for irrigation, as liquid fertilizer and for aquaculture

3.10 setback distance
distance from the perimeter of the irrigation area to the community or area of concern that is sensitive to contamination
3.11 waste
any material either solid, liquid, semi-solid, contained gas or other forms resulting from industrial, commercial, mining, or agricultural operations, or from community and household activities that is devoid of usage and discarded

3.12 wastewater
waste in liquid state containing pollutants

4 Sources of Wastewater

4.1 Livestock
4.1.1 Piggeries
4.1.2 Beef and dairy feedlots
4.2 Agriculture and food industrial processes
4.2.1 Food handling
4.2.2 Processing and manufacturing plants
4.2.3 Sugar mills, refineries and distilleries
4.2.4 Slaughterhouses and poultry dressing plants
4.3 Aquaculture
4.3.1 Reservoirs
4.3.2 Hatcheries
4.3.3 Ponds
4.3.4 Tanks
4.4 Domestic and municipal sewage
4.5 Industrial and commercial establishments

5 Quality of Treated Wastewater for Irrigation

5.1 Treated wastewater shall be tested for quality. The following standard analytical procedures for measurement may be used:

5.1.1 DENR Administrative Order 35 series of 1990 – Revised Effluent Regulations

5.1.2 Standard Methods for the Examination of Water and Wastewater by the American Public Health Association

5.1.3 US-EPA Methods for Water Analysis

5.2 Laboratory analysis shall be conducted by the Department of Agriculture and DENR recognized laboratories.

5.3 The required limits on treated wastewater quality and trace elements for irrigation are shown in Table 1 and Table 2, respectively.
6 Quantity of Wastewater for Irrigation

6.1 The hydraulic loading rate shall be greater than the irrigation requirement.

6.2 Runoff or ponding in the ground surface shall be avoided such that the application rate shall be less than the intake rate (Table 4).

6.3 Soil from the proposed irrigation area shall be subjected to chemical characterization.
Table 1. Limits on wastewater quality for irrigation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Landscape Irrigation</th>
<th>Method of Analysis</th>
<th>Crop Irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Food eaten raw and not commercially processed</td>
</tr>
<tr>
<td>For crop productivity and protection of environment</td>
<td></td>
<td></td>
<td></td>
<td><500</td>
</tr>
<tr>
<td>Bicarbonates¹</td>
<td>mg/L</td>
<td><500</td>
<td></td>
<td><500</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (BOD₅)</td>
<td>mg/L</td>
<td><150</td>
<td>Azide Modification (Dilution Technique)</td>
<td><150</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>μS/cm</td>
<td><2000</td>
<td></td>
<td><1000</td>
</tr>
<tr>
<td>Free Residual Chlorine</td>
<td>mg/L</td>
<td><1</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>6.5 – 8.0</td>
<td>Glass Electrode Method</td>
<td>6.5 – 8.0</td>
</tr>
<tr>
<td>Sodium Adsorption Ratio (SAR)</td>
<td></td>
<td><18</td>
<td></td>
<td><18</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>meq/L</td>
<td><3</td>
<td></td>
<td><3</td>
</tr>
<tr>
<td>Total Nitrogen (TN)¹</td>
<td>mg/L</td>
<td><30</td>
<td></td>
<td><30</td>
</tr>
<tr>
<td>Total Phosphorus (TP)¹</td>
<td>mg/L</td>
<td><30</td>
<td></td>
<td><30</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>mg/L</td>
<td><140</td>
<td>Gravimetric Method</td>
<td><140</td>
</tr>
<tr>
<td>For protection of animal and human health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascaris</td>
<td>MPN/100 mL</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Fecal Coliform</td>
<td>MPN/100 mL</td>
<td><200</td>
<td>Multiple-Tube Fermentation Technique or Membrane Filter</td>
<td>Not detectable²</td>
</tr>
<tr>
<td>Nematodes</td>
<td>MPN/100 mL</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

¹ None to moderate degree of restriction
² Not detectable – means the total number of total fecal coliform organisms shall not exceed 14 MPN/100 ML in any sample

Table 2. Limits of Trace Elements in Irrigation Waters

<table>
<thead>
<tr>
<th>Trace element including heavy metals</th>
<th>Method of Analysis</th>
<th>Landscape/Crop Irrigation (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>Silver Diethyldithiocarbamate Method (Colorimetric)</td>
<td>0.10</td>
</tr>
<tr>
<td>Beryllium</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>Boron</td>
<td>Carmine Method (Colorimetric Method)</td>
<td>0.75</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Atomic Absorption Spectrophotometry (West ashing with concentrated HNO3, + HCl)</td>
<td>0.01</td>
</tr>
<tr>
<td>Chromium</td>
<td>Diphenyl Carbazide Colorimetric Method</td>
<td>0.10</td>
</tr>
<tr>
<td>Cobalt</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Copper</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Fluoride</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Lead</td>
<td>Atomic Absorption Spectrophotometry</td>
<td>0.20</td>
</tr>
<tr>
<td>Lithium</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Mercury</td>
<td>Cold Vapor Technique (Mercury Analyzer, AAS)</td>
<td>0.002</td>
</tr>
<tr>
<td>Molybdenum</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Selenium</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>Zinc</td>
<td>2.00</td>
<td></td>
</tr>
</tbody>
</table>

3 High toxicity in acid soils, not a concern if soil pH > 6.5
4 Higher toxicity in acid soils
5 Citrus: 0.075 mg/L
6 1 mg/L recommended for sandy soil (pH<6)

7 Site Selection

7.1 Highly permeable soils such as sandy and gravelly soils, and extremely permeable soils such as heavy clay shall be avoided.

7.2 Highly acidic soils with pH of less than 4 and highly alkaline soils with pH of greater than 8.5 shall be avoided where soils with pH of 5.5 are preferred.
7.3 Soil depth shall be greater than 1.0 m.

Table 3. General Guidelines and Reference on the Movement of Re-used Wastewater Relative to Soil Types

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Intake Rate(^1) (cm/h)</th>
<th>Classification(^2)</th>
<th>Hydraulic Conductivity(^3) (cm/h)</th>
<th>Classification(^3)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>0.01-0.8</td>
<td>Very Slow-Slow</td>
<td>< 0.125-0.5</td>
<td>Very Slow-Slow</td>
<td>Very high buffering potential, High ponding potential</td>
</tr>
<tr>
<td>Silty Clay</td>
<td>0.8-2.0</td>
<td>Moderately Slow</td>
<td>0.5-2.0</td>
<td>Moderately Slow</td>
<td>Moderate buffering potential, Moderate ponding potential</td>
</tr>
<tr>
<td>Clay Loam</td>
<td>2.0-6.0</td>
<td>Moderate</td>
<td>2.0-6.25</td>
<td>Moderate</td>
<td>Moderate buffering potential, Moderate ponding potential</td>
</tr>
<tr>
<td>Loam</td>
<td>6.0-12.0</td>
<td>Moderately Rapid</td>
<td>6.25-12.5</td>
<td>Moderately Rapid</td>
<td>Moderate buffering potential, Low ponding potential</td>
</tr>
<tr>
<td>Sandy Loam</td>
<td>12.5-25.0</td>
<td>Rapid</td>
<td>12.5-25.0</td>
<td>Rapid</td>
<td>Low buffering potential, very low ponding potential</td>
</tr>
<tr>
<td>Sand</td>
<td>> 25.0</td>
<td>Very Rapid</td>
<td>>25.0</td>
<td>Very Rapid</td>
<td>No buffering and ponding potential</td>
</tr>
</tbody>
</table>

\(^1\)Refers to the initial surface vertical entry of water into the soil horizon, wherein water accumulates as a result of the natural formation of a wetting front within the A-horizon;
\(^2\)Based from C. Berryman (1973) and Israelsen and Hansen (1963);
\(^3\) Based from FAO (1963)

SOURCE: Department of Agriculture. 2007. Guidelines on the Procedures and Technical Requirements for the Issuance of a Certification Allowing the Safe Re-Use Of Wastewater for Purposes of Irrigation and Other Agricultural Uses

8 Distribution Methodology and Design

8.1 Delivery of wastewater through a pipeline:

8.1.1 The pipes shall be properly marked with the owner's name and the kind of water it is delivering. It shall be legible and recognizable along the pipe's length.
8.1.2 The pipes shall be free of leaks on both ends and shall not be vulnerable to external factors.

8.1.3 Delivery schedules indicated in the submitted irrigation plan shall be strictly implemented. In the event of inevitable and justifiable situations, the responsible government entity shall be informed prior to delivery.

8.1.4 The pipes shall not in any way store or keep wastewater after the volume approved for the schedule was delivered.

8.2 Delivery of wastewater through tanker truck:

8.2.1 The tanker truck shall carry complete documentation of its cargo such as permit to carry and transport wastewater to a specified place of use, information on the source and destination, volume and purpose of wastewater cargo.

8.2.2 The tanker truck shall be properly marked with the owner’s name and the kind of water it is delivering. It shall be legible and recognizable.

8.2.3 The tanker truck shall be leak-free and spill-free at any time and place between to source to its destination.

8.2.4 The tanker truck shall be equipped with booms or hose for distribution if it will be used to directly apply wastewater to the field. People involved shall wear safety garments with nametags with the generator’s name easily recognizable.

8.2.5 Delivery schedules indicated in the submitted irrigation plan shall be strictly implemented. In the event of inevitable and justifiable situations, the responsible government entity shall be informed prior to delivery.
9 Irrigation Method Selection

Table 4 shows the suitable type of irrigation for various purposes and the setback distances.

Table 4. Required Type of Irrigation and Setback Distances

<table>
<thead>
<tr>
<th>Type of irrigation system</th>
<th>Landscape Irrigation</th>
<th>Crop Irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restricted Area</td>
<td>Access Area</td>
</tr>
<tr>
<td>Sprinkler and drip</td>
<td>90 m</td>
<td>25 m</td>
</tr>
<tr>
<td>Sprinkler and drip</td>
<td>30 m</td>
<td>-</td>
</tr>
</tbody>
</table>

SOURCE: Department of Agriculture. 2007. Guidelines on the Procedures and Technical Requirements for the Issuance of a Certification Allowing the Safe Re-Use Of Wastewater for Purposes of Irrigation and Other Agricultural Uses

10 Precautionary Measures

10.1 Direct contact with wastewater shall be avoided.

10.2 Use of fine mist for sprinkler irrigation shall be avoided to minimize the risk of aerosol dispersion by wind drift.

10.3 Potable and wastewater lines shall not cross-connect. Wastewater pipeline shall be installed far enough from a parallel potable water pipeline.

10.4 Storage facilities shall be designed such that seepage is prevented and freeboard is adequate.

10.5 Irrigation with wastewater shall be stopped immediately when algal bloom occurs.

11 Bibliography

DENR Administrative Order 35 series of 1990 – Revised Effluent Regulations

Technical Working Group (TWG) for the Development of Philippine National Standard for Wastewater Reuse for Irrigation

Chair

Engr. Bonifacio S. Labiano
National Irrigation Administration

Members

Engr. Felimar M. Torizo
Board of Agricultural Engineering
Professional Regulation Commission

Dr. Teresita S. Sandoval
Bureau of Soils and Water Management
Department of Agriculture

Dr. Armando N. Espino Jr.
Central Luzon State University

Dr. Elmer D. Castillo
Philippine Society of Agricultural Engineers

Dr. Roger A. Luyun Jr.
University of the Philippines Los Baños

Engr. Francia M. Macalintal
Philippine Council for Agriculture and Fisheries
Department of Agriculture

Project Managers

Engr. Darwin C. Aranguren

Engr. Romulo E. Eusebio

Engr. Mary Louise P. Pascual

Engr. Fidelina T. Flores

Engr. Marie Jehosa B. Reyes

Ms. Micah L. Araño

Ms. Caroline D. Lat

Mr. Gerald S. Trinidad

University of the Philippines Los Baños – Agricultural Machinery Testing and Evaluation Center